Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.

Identifieur interne : 000013 ( Main/Exploration ); précédent : 000012; suivant : 000014

The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.

Auteurs : Stephanie D. Himpsl [États-Unis] ; Allyson E. Shea [États-Unis] ; Jonathan Zora [États-Unis] ; Jolie A. Stocki [États-Unis] ; Dannielle Foreman [États-Unis] ; Christopher J. Alteri [États-Unis] ; Harry L T. Mobley [États-Unis]

Source :

RBID : pubmed:32106241

Descripteurs français

English descriptors

Abstract

The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.

DOI: 10.1371/journal.ppat.1008382
PubMed: 32106241
PubMed Central: PMC7064253


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.</title>
<author>
<name sortKey="Himpsl, Stephanie D" sort="Himpsl, Stephanie D" uniqKey="Himpsl S" first="Stephanie D" last="Himpsl">Stephanie D. Himpsl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shea, Allyson E" sort="Shea, Allyson E" uniqKey="Shea A" first="Allyson E" last="Shea">Allyson E. Shea</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zora, Jonathan" sort="Zora, Jonathan" uniqKey="Zora J" first="Jonathan" last="Zora">Jonathan Zora</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stocki, Jolie A" sort="Stocki, Jolie A" uniqKey="Stocki J" first="Jolie A" last="Stocki">Jolie A. Stocki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Foreman, Dannielle" sort="Foreman, Dannielle" uniqKey="Foreman D" first="Dannielle" last="Foreman">Dannielle Foreman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alteri, Christopher J" sort="Alteri, Christopher J" uniqKey="Alteri C" first="Christopher J" last="Alteri">Christopher J. Alteri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mobley, Harry L T" sort="Mobley, Harry L T" uniqKey="Mobley H" first="Harry L T" last="Mobley">Harry L T. Mobley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32106241</idno>
<idno type="pmid">32106241</idno>
<idno type="doi">10.1371/journal.ppat.1008382</idno>
<idno type="pmc">PMC7064253</idno>
<idno type="wicri:Area/Main/Corpus">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000141</idno>
<idno type="wicri:Area/Main/Curation">000141</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000141</idno>
<idno type="wicri:Area/Main/Exploration">000141</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.</title>
<author>
<name sortKey="Himpsl, Stephanie D" sort="Himpsl, Stephanie D" uniqKey="Himpsl S" first="Stephanie D" last="Himpsl">Stephanie D. Himpsl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shea, Allyson E" sort="Shea, Allyson E" uniqKey="Shea A" first="Allyson E" last="Shea">Allyson E. Shea</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zora, Jonathan" sort="Zora, Jonathan" uniqKey="Zora J" first="Jonathan" last="Zora">Jonathan Zora</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stocki, Jolie A" sort="Stocki, Jolie A" uniqKey="Stocki J" first="Jolie A" last="Stocki">Jolie A. Stocki</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Foreman, Dannielle" sort="Foreman, Dannielle" uniqKey="Foreman D" first="Dannielle" last="Foreman">Dannielle Foreman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Alteri, Christopher J" sort="Alteri, Christopher J" uniqKey="Alteri C" first="Christopher J" last="Alteri">Christopher J. Alteri</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mobley, Harry L T" sort="Mobley, Harry L T" uniqKey="Mobley H" first="Harry L T" last="Mobley">Harry L T. Mobley</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Citric Acid Cycle (physiology)</term>
<term>Escherichia coli Infections (metabolism)</term>
<term>Escherichia coli Proteins (metabolism)</term>
<term>Female (MeSH)</term>
<term>Fumarate Hydratase (metabolism)</term>
<term>Gene Expression Regulation, Bacterial (physiology)</term>
<term>Iron (metabolism)</term>
<term>Mice (MeSH)</term>
<term>Mice, Inbred CBA (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Urinary Tract Infections (microbiology)</term>
<term>Uropathogenic Escherichia coli (metabolism)</term>
<term>Uropathogenic Escherichia coli (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cycle citrique (physiologie)</term>
<term>Escherichia coli uropathogène (métabolisme)</term>
<term>Escherichia coli uropathogène (physiologie)</term>
<term>Femelle (MeSH)</term>
<term>Fer (métabolisme)</term>
<term>Fumarate hydratase (métabolisme)</term>
<term>Infections urinaires (microbiologie)</term>
<term>Infections à Escherichia coli (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines Escherichia coli (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (physiologie)</term>
<term>Souris (MeSH)</term>
<term>Souris de lignée CBA (MeSH)</term>
<term>Stress oxydatif (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli Proteins</term>
<term>Fumarate Hydratase</term>
<term>Iron</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli Infections</term>
<term>Uropathogenic Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Infections urinaires</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Urinary Tract Infections</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli uropathogène</term>
<term>Fer</term>
<term>Fumarate hydratase</term>
<term>Infections à Escherichia coli</term>
<term>Protéines Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cycle citrique</term>
<term>Escherichia coli uropathogène</term>
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Citric Acid Cycle</term>
<term>Gene Expression Regulation, Bacterial</term>
<term>Uropathogenic Escherichia coli</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Female</term>
<term>Mice</term>
<term>Mice, Inbred CBA</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Femelle</term>
<term>Oxydoréduction</term>
<term>Souris</term>
<term>Souris de lignée CBA</term>
<term>Stress oxydatif</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32106241</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008382</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1008382</ELocationID>
<Abstract>
<AbstractText>The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Himpsl</LastName>
<ForeName>Stephanie D</ForeName>
<Initials>SD</Initials>
<Identifier Source="ORCID">0000-0003-2210-4161</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shea</LastName>
<ForeName>Allyson E</ForeName>
<Initials>AE</Initials>
<Identifier Source="ORCID">0000-0003-1329-3888</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zora</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stocki</LastName>
<ForeName>Jolie A</ForeName>
<Initials>JA</Initials>
<Identifier Source="ORCID">0000-0002-2597-0658</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Foreman</LastName>
<ForeName>Dannielle</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-6010-4472</Identifier>
<AffiliationInfo>
<Affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Alteri</LastName>
<ForeName>Christopher J</ForeName>
<Initials>CJ</Initials>
<Identifier Source="ORCID">0000-0002-6367-5684</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Natural Sciences, University of Michigan Dearborn, Dearborn, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mobley</LastName>
<ForeName>Harry L T</ForeName>
<Initials>HLT</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029968">Escherichia coli Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.-</RegistryNumber>
<NameOfSubstance UI="C095842">fumarase C</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.2.1.2</RegistryNumber>
<NameOfSubstance UI="D005649">Fumarate Hydratase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002952" MajorTopicYN="N">Citric Acid Cycle</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004927" MajorTopicYN="N">Escherichia coli Infections</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029968" MajorTopicYN="N">Escherichia coli Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005649" MajorTopicYN="N">Fumarate Hydratase</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008808" MajorTopicYN="N">Mice, Inbred CBA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014552" MajorTopicYN="N">Urinary Tract Infections</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056689" MajorTopicYN="N">Uropathogenic Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>09</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32106241</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1008382</ArticleId>
<ArticleId IdType="pii">PPATHOGENS-D-19-01673</ArticleId>
<ArticleId IdType="pmc">PMC7064253</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2011 Jun;80(6):1516-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21542868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2015 Jun;3(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26185077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Urol. 1987 Sep;138(3):632-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3625871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Sep 23;467(7314):426-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20864996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 8;277(45):42563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12200425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1963 Nov;238:3770-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14109218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Aug;189(15):5523-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17513470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Chromatogr. 2001 May;15(3):166-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11391672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2009 Apr;77(4):1397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1992 Dec 15;100(1-3):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1478458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2015 Jan 08;11(1):e1004601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25568946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Feb;74(2):1072-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2019 Jul 24;201(16):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31160397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Aug 25;270(34):19767-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7649986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Sep 7;130(5):797-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(1):304-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2012 Feb;15(1):3-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22204808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2019 Apr 2;10(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30940709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 25;268(30):22369-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8226748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 May 11;101(19):7427-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Mar 8;339(6124):1210-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1990 May;58(5):1281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2182540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013;9(6):e1003428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23825943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2001 Jan;183(2):461-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11133938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Feb;74(2):1130-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16428761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2008 Mar;76(3):1128-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18086808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1957 Dec;229(2):755-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13502337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Spectr. 2015 Jun;3(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26185076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 May;5(5):e1000448</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19478872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Nov;176(21):6599-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1986 Jun;5(6):1389-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2874022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 Jul;66(7):3303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9632599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2012 Oct 30;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23111869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bacteriol Rev. 1977 Mar;41(1):47-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">140652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10829079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1995 Feb;15(3):473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7783618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1958 Jan;230(1):97-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13502378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1988 Apr 28;954(1):14-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3282546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):679-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19013277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 1991 May;109(5):728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1917897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jan 12;282(2):929-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17102132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Nov;177(21):6255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7592392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Jul;180(14):3495-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9657988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Oct 27;31(42):10331-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1329945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1997 Jul 4;1320(3):217-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9230919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2002 Jul;70(7):3344-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12065472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2004 Nov;72(11):6373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15501767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2017 Jan 3;8(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 May;190(10):3747-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1631070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2009;55:1-79, 317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19573695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mBio. 2018 Mar 6;9(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29511075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Nov;73(11):7644-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Oct;82(1):145-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21854465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1999 Dec;67(12):6424-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10569759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1983 Apr;40(1):273-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6339403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2007 Nov 20;2(11):708-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18030985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2007 Oct;75(10):4891-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17698572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 Sep;119(3):736-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4604283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2006 Jul;74(7):4039-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16790777</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Himpsl, Stephanie D" sort="Himpsl, Stephanie D" uniqKey="Himpsl S" first="Stephanie D" last="Himpsl">Stephanie D. Himpsl</name>
</region>
<name sortKey="Alteri, Christopher J" sort="Alteri, Christopher J" uniqKey="Alteri C" first="Christopher J" last="Alteri">Christopher J. Alteri</name>
<name sortKey="Alteri, Christopher J" sort="Alteri, Christopher J" uniqKey="Alteri C" first="Christopher J" last="Alteri">Christopher J. Alteri</name>
<name sortKey="Foreman, Dannielle" sort="Foreman, Dannielle" uniqKey="Foreman D" first="Dannielle" last="Foreman">Dannielle Foreman</name>
<name sortKey="Mobley, Harry L T" sort="Mobley, Harry L T" uniqKey="Mobley H" first="Harry L T" last="Mobley">Harry L T. Mobley</name>
<name sortKey="Shea, Allyson E" sort="Shea, Allyson E" uniqKey="Shea A" first="Allyson E" last="Shea">Allyson E. Shea</name>
<name sortKey="Stocki, Jolie A" sort="Stocki, Jolie A" uniqKey="Stocki J" first="Jolie A" last="Stocki">Jolie A. Stocki</name>
<name sortKey="Zora, Jonathan" sort="Zora, Jonathan" uniqKey="Zora J" first="Jonathan" last="Zora">Jonathan Zora</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000013 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000013 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32106241
   |texte=   The oxidative fumarase FumC is a key contributor for E. coli fitness under iron-limitation and during UTI.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32106241" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020